Abstract

External metal-loss corrosion is one of the major contributing factors for pipeline failures in North America. Corrosion growth rate plays a crucial role in managing corrosion hazard for gas and liquid pipelines. Quantifying the growth of corrosion over time is critically important for the risk and reliability analysis of pipelines, planning for corrosion mitigation and repair, and determination of time intervals for corrosion inspections. Conservatism in predicting the growth rate has significant engineering implication as non-conservatism can lead to critical anomalies being missed by mitigation actions and may cause pipeline failure; whereas, over conservatism can lead to unnecessary inspections and anomaly mitigations that may result in significant unnecessary cost to pipeline operators. As more and more pipelines are now being inspected by in-line inspection (ILI) tools on a regular basis, the ILI data from multiple inspections provide valuable information about the growth of corrosion anomalies on the pipeline. Although the application of linear growth rate calculated by comparing depths from two successive ILI is a common practice in the pipeline industry, research has shown that the growth of corrosion anomaly is non-linear and anomaly-specific. The authors of this paper have previously developed anomaly-specific non-linear corrosion growth model based on multiple ILI data. The objectives of this paper are to demonstrate the appropriateness of anomaly-specific non-linear corrosion growth model, and to illustrate the advantages of using non-linear corrosion growth model in the integrity management program. Two case studies were performed to illustrate the application of non-linear growth model by incorporating the measurement errors associated with the ILI tools, which include both the bias (constant and non-constant) and random scattering error. The findings of these case studies are presented in this paper.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.