Abstract

In the present paper, quantization of a weakly nonideal Bose gas at zero temperature along the lines of the well-known Bogolyubov approach is performed. The analysis presented in this paper is based, in addition to the steps of the original Bogolyubov approach, on the use of nonoscillation modes (which are also solutions of the linearized Heisenberg equation) for recovering the canonical commutation relations in the linear approximation, as well as on the calculation of the first nonlinear correction to the solution of the linearized Heisenberg equation which satisfies the canonical commutation relations at the next order. It is shown that, at least in the case of free quasi-particles, consideration of the nonlinear correction automatically solves the problem of nonconserved particle number, which is inherent to the original approach.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.