Abstract

We investigate the absorption spectrum of s-wave superconductors under microwave pump field irradiation. The third-order response function is calculated in the dirty limit with the electron–phonon interaction included at finite temperatures. We find that the nonlinear correction to the linear absorption shows peculiar behavior when the pump field frequency is smaller than the superconducting gap. At finite temperatures, a negative nonlinear correction exists, which is caused by thermally excited quasiparticles. The vertex correction by impurity scattering is found to contain a dissipation mechanism by inelastic scattering (interaction between electrons and acoustic phonons) or nonlocality. We need this mechanism to obtain finite absorption in a nonequilibrium stationary state under a monochromatic external field. Although this term originates from the deformation of a one-particle state, there is also a final-state interaction (the amplitude mode). The latter term represents two-photon excitation and is a...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.