Abstract

Control moment gyroscopes (CMG) are widely used as actuators for attitude control of satellites and spacecraft, which requires the controller to fulfill the tracking task of a CMG in a wide operating range, despite its highly coupled nonlinear behavior. A variety of control techniques were proposed for tracking task of the CMG unit, model 750, from Educational Control Products (ECP), but a few accomplished it in a wide operating range, e.g., the linear parameter-varying approach. Another one that may accomplish it is the nonlinear control approach. Therefore, this article proposes a nonlinear controller design based on feedback linearization for the tracking task of the CMG unit in a wide operating range. To cope with a singularity that would appear in the control signal computation, the proposed controller has a cascade structure composed of an outer tracking controller and an inner velocity controller, both based on the input-output linearization approach. The designed controller is validated via numerical simulations and real-time practical experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.