Abstract

Results of study of nonlinear processes occurring during the propagation of light pulses in optical fibers doped with atoms of rare-earth elements under conditions of atomic coherence and interference are presented. For a three-level Λ scheme of interaction, the linear (χ(1)) and nonlinear (χ(3)) susceptibilities of such a medium are calculated. It is shown that the coefficients of Kerr nonlinearity and nonlinear absorption can reach extremely large values and can be negative. The competition between linear and nonlinear processes in the Λ scheme allows one to obtain compensation regimes when the coefficients of dispersion or absorption of the optical fiber material vanish. The efficient control of the optical properties of such a system over wide limits proves to be possible owing to variations in the parameters of light pulses at the input of the medium. The necessary conditions for realizing regimes with “slow” light, as well as for self-compression of a probing pulse on ultimately small spatial scales in a doped optical fiber, were obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.