Abstract

This paper introduces a sensorless nonlinear control scheme for controlling the speed of a permanent magnet synchronous motor (PMSM) driving an unknown load torque. The states of the motor and disturbance torque are estimated via an extended nonlinear observer avoiding the use of mechanical sensors. The control strategy is an exact feedback linearization law, with trajectory tracking evaluated on estimated values of the PMSM states and the disturbance torque. The system performance is evaluated by simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.