Abstract

The actual article presents the modeling and control of a multilink unmanned aerial system whose dynamics is computed by means of the Euler-Lagrange approach. The aforementioned system is subjected to lumped disturbances, which comprise external disturbances and parametric uncertainties. An augmented-state extended Kalman filter intended to estimate endogenous and exogenous uncertainties is conceived and a trajectory-tracking controller fulfilling Lyapunov asymptotic stability is synthesized. A simulation stage is conducted to validate the effectiveness of the proposal.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.