Abstract

This paper presents the Takagi-Sugeno (TS) fuzzy control design for nonlinear stabilization and tracking control of a ball on plate system. To deal with the plant nonlinearity and the fuzzy convergence issue, we formulate the parallel distributed compensator (PDC) TS fuzzy model to characterize the global behaviour of the nonlinear system and synthesize a feasible control framework using a velocity compensation scheme. The nonlinear dynamics of the ball on plate system is obtained using the Euler-Lagrangian energy based approach. To identify the moving objects in the video stream, a background subtraction algorithm using thresholding technique is formulated. Moreover, the stability analysis of the TS fuzzy control is reduced to linear matrix inequality (LMI) problem and solved using the Lyapunov direct method. The potential benefits of the proposed control structure for real time test cases are experimentally assessed using hardware in loop (HIL) testing on a ball on plate system. Experimental results substantiate that the TS fuzzy scheme can significantly improve not only the tracking performance but also the robustness of the closed loop system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call