Abstract

This paper deals with nonlinear control of a single-phase half-bridge interleaved buck shunt active power filter (HBIB-SAPF) with a nonlinear load. The control objective for the system is twofold: performing power factor correction by compensating for harmonics and reactive current consumed by the nonlinear load from one hand and tightly regulating the HBIB converter DC capacitor voltage. Both objectives are accomplished using a two-loop nonlinear controller. The inner loop acts on the switching devices so that the active filter current tracks its reference with the aim of ensuring a unity power factor. This loop is tackled using backstepping technique and Lyapunov approach. The outer loop is responsible for regulating the DC capacitor voltage to its desired value, using a PI controller with a pre-filter. The stability analysis of the closed-loop system is formally performed by using the averaging theory. The validity of the designed nonlinear controller is checked by simulations in Matlab/SimpowerSystem showing its robustness and accuracy under various operating conditions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call