Abstract

AbstractOptical image processing and computing systems provide supreme information processing rates by utilizing parallel optical architectures. Existing optical analog processing techniques require multiple devices for projecting images and executing computations. In addition, those devices are typically limited to linear operations due to the time‐invariant optical responses of the building materials. In this work, a single metalens with an illumination intensity dependent coherent transfer function (CTF) is proposed and experimentally demonstrated, which performs varying computed imaging without requiring any additional optical components. The metalens consisting of nanoantenna structures with a static geometric phase and a nonlinear metallic quantum well layer offering an intensity‐dependent dynamic phase results in a continuously tunable CTF. The approach allows for a weighted summation of two designed functions based on the metalens design, which potentially enables all optical computations of complex functions. The nonlinear metalens may lead to important applications in optical neural networks and parallel analog computing.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call