Abstract

Previous studies of the semilinear wave equation in Minkowski space have shown a type of critical behavior in which large initial data collapse to singularity formation due to nonlinearities while small initial data does not. Numerical solutions in spherically symmetric Anti-de Sitter (AdS) are presented here which suggest that, in contrast, even small initial data collapse eventually. Such behavior appears analogous to the recent result of Ref. [1] that found that even weak, scalar initial data collapse gravitationally to black hole formation via a weakly turbulent instability. Furthermore, the imposition of a reflecting boundary condition in the bulk introduces a cut-off, below which initial data fails to collapse. This threshold appears to arise because of the dispersion introduced by the boundary condition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.