Abstract

The vegetation is known to be sensitive to both climate change and anthropogenic disturbance. However, the relationship between changes in vegetation and climate is unclear in karst regions. The nonlinear characteristics of vegetation change and its possible relationships with driving factors in the karst region of southwest China are revealed, using methods of Ensemble Empirical Mode Decomposition, Mann-Kendall, and Partial Least Squares Regression. The results show that: (1) vegetation changes demonstrate an increasing trend with an abrupt change in 2002. Multiple time scales of 3, 6, 10, and 25-year are observed in vegetation variations, dominated by long-term trend and the short time scale of 3-year with variance contributions of 58.10% and 28.63%. (2) The relationship of climate indexes with vegetation changes shows r2 = 0.78 ( p < 0.01) based on the reconstruction of characteristic scales, indicating significant great relationship. In space, the area percentage with relationship of climate to vegetation is more than 50%, and the impact is much greater after the abrupt change of vegetation in 2002 ( r2 are 0.24–0.91 and 0.42–0.99, respectively). In addition, the correlation between vegetation change and ecological engineering is 0.15 ( p < 0.01). The results indicate that climate change is the main impact factor of vegetation change, ecological engineering has positive influences in improving vegetation condition, and methods of scales decomposition and abrupt detection could reveal some hidden information for better understanding ecosystems in karst regions.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call