Abstract
Plasmonic nanoparticles can be employed as a promising integrated platform for lumped optical nanoelements with unprecedentedly high integration capacity and efficient nanoscale ultrafast nonlinear functionality. Further minimizing the size of plasmonic nanoelements will lead to a rich variety of nonlocal optical effects due to the nonlocal nature of electrons in plasmonic materials. In this work, we theoretically investigate the nonlinear chaotic dynamics of the plasmonic core-shell nanoparticle dimer consisting of a nonlocal plasmonic core and a Kerr-type nonlinear shell at nanometer scale. This kind of optical nanoantennae could provide novel switching functionality: tristable, astable multivibrators, and chaos generator. We give a qualitative analysis on the influence of nonlocality and aspect ratio of core-shell nanoparticles on the chaos regime as well as on the nonlinear dynamical processing. It is demonstrated that considering nonlocality is very important in the design of such nonlinear functional photonic nanoelements with ultra-small size. Compared to solid nanoparticles, core-shell nanoparticles provide an additional freedom to adjust their plasmonic property hence tuning the chaotic dynamic regime in the geometric parameter space. This kind of nanoscale nonlinear system could be the candidate for a nonlinear nanophotonic device with a tunable nonlinear dynamical response.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.