Abstract

AbstractElectro‐hydraulic actuators have been widely used in industrial production, but the unknown variable payload seriously affects its position control accuracy. Therefore, a radial basis function neural network disturbance observer is designed to estimate the lumped disturbance force through strong online learning ability in the absence of force sensor. Besides, a nonlinear cascade controller with double loop structure is proposed in this paper. A global fast terminal sliding mode control method is firstly applied in the outer loop position system, which can eliminate chattering and improve convergence speed comparing to traditional sliding mode control. The inner loop force system adopts a backstepping control method to calculate the actual input of the whole system. Theoretical analysis indicates that the proposed controller is stable even if existing time‐variant disturbance. Moreover, three comparative controllers are designed and tested in both simulations and experiments. Comparative results show that the developed method has absolute average errors of 1.14 and 0.49 mm in different position tracking, which means more satisfactory tracking performance compared to the contrast controllers.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call