Abstract

In the quadratic approximation with respect to the amplitudes of capillary oscillation and velocity field of the liquid moving inside a charged drop of a perfectly conducting fluid, it is shown that the liquid drop oscillates about a weakly prolate form. This refines the result obtained in the linear theory developed by Lord Rayleigh, who predicted oscillation about a spherical form. The extent of elongation is proportional to the initial amplitude of the principal mode and increases with the intrinsic charge carried by the drop. An estimate is obtained for the characteristic time of instability development for a critically charged drop.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.