Abstract

The nonlinear buckling behavior of functionally graded graphene platelet reinforced composite (FG-GPLRC) cylindrical shells reinforced by ring, stringer and/or spiral FG-GPLRC stiffeners under torsional loads is studied by an analytical approach. The governing equations are based on the Donnell shell theory with geometrical nonlinearity of von Kármán-Donnell-type, combining the improvability of Lekhnitskii’s smeared stiffeners technique for spiral FG-GPLRC stiffeners. The effects of mechanical and thermal loads are considered in this paper. The number of spiral stiffeners, stiffener angle, and graphene volume fraction, are numerically investigated. A very large effect of spiral FG-GPLRC stiffeners on the nonlinear buckling behavior of shells in comparison with orthogonal FG-GPLRC stiffeners is approved in numerical results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.