Abstract

Bubble nucleation and growth following plasma channeling (filament) and white-light continuum in liquid irradiated by a single-shot fs-pulse were experimentally investigated with close observation of the time scale. Making full use of a new confocal system and time-resolved visualization techniques, we obtained evidence suggestive of a major/minor role of the non-linear/thermal effects during the fs-pulse-induced bubble's fountainhead (10−13 s) and growth (10−7 s), which was never observed with the use of the ns-pulse (i.e., optic cavitation). In this context, the fs-pulse-induced bubble is not an ordinary optic cavitation but rather is nonlinear-optic cavitation. We present the intrinsic differences in the dominant-time domain of the fs-pulse and ns-pulse excitation, and intriguingly, a mere hundred femtoseconds' excitation predetermines the size of the bubble appearing several microseconds after irradiation. That is, the nucleation happens temporally beyond a six-order-of-magnitude difference.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call