Abstract

The self-similar nonlinear evolution of the multimode ablative Rayleigh–Taylor instability (RTI) and the ablation-generated vorticity effect are studied for a range of initial conditions. We show that, unlike classical RTI, the nonlinear multimode bubble-front evolution remains in the bubble competition regime due to ablation-generated vorticity, which accelerates the bubbles, thereby preventing a transition into the bubble-merger regime. We develop an analytical bubble competition model to describe the linear and nonlinear stages of ablative RTI. We show that vorticity inside the multimode bubbles is most significant at small scales with large initial perturbation. Since these small scales persist in the bubble competition regime, the self-similar growth coefficient αb can be enhanced by up to 30% relative to ablative bubble competition without vorticity effects. We use the ablative bubble competition model to explain the hydrodynamic stability boundary observed in OMEGA low-adiabat implosion experiments.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.