Abstract

This paper studies the design of a finite-dimensional output feedback controller for the stabilization of a reaction-diffusion equation in the presence of a sector nonlinearity in the boundary input. Due to the input nonlinearity, classical approaches relying on the transfer of the control from the boundary into the domain with explicit occurrence of the time-derivative of the control cannot be applied. In this context, we first demonstrate using Lyapunov direct method how a finite-dimensional observer-based controller can be designed, without using the time derivative of the boundary input as an auxiliary command, in order to achieve the boundary stabilization of general 1-D reaction-diffusion equations with Robin boundary conditions and a measurement selected as a Dirichlet trace. We extend this approach to the case of a control applying at the boundary through a sector nonlinearity. We show from the derived stability conditions the existence of a size of the sector (in which the nonlinearity is confined) so that the stability of the closed-loop system is achieved when selecting the dimension of the observer to be large enough.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.