Abstract

We study properties of solutions to fully nonlinear versions of the standard Black–Scholes partial differential equation. These equations have been introduced in financial mathematics in order to deal with illiquid markets or with stochastic volatility. We show that typical nonlinear Black–Scholes equations can be viewed as dynamic programming equation of an associated control problem. We establish existence and comparison results and show that the equation induces a convex risk measure on the set of all continuous terminal value claims. Moreover, we study the asymptotic behavior of solutions as market frictions get “large.” Finally, the pricing of individual contracts relative to a book of derivatives is discussed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.