Abstract

Abstract Precision and stability in position control of robots are critical parameters in many industrial applications where high accuracy is needed. It is well known that digital effect is destabilizing and can cause instabilities. In this paper, we analyze a single DoF model of a robotic arm and we present the stability limits in the parameter space of the control gains. Furthermore we introduce a nonlinearity relative to the saturation of the control force in the model, reduce the dynamics of the nonlinear map to its local center manifold, study the bifurcation along the stability border and identify conditions under which a supercritical or subcritical bifurcation occurs. The obtained results explain some of the typical instabilities occurring in industrial applications. We verify the obtained results through numerical simulations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.