Abstract

AbstractIn this research the tail-equivalent linearization method (TELM) has been applied to a structure with biaxial behavior of materials, using the biaxial Bouc-Wen material model. The modeled structure has been subjected to independent bidirectional excitation with the incident angle θ with major axes of structure. The direct differentiation method (DDM) has been developed for calculating the response and its derivatives for the first time for the biaxial Bouc-Wen material model, where the application of DDM is more difficult compared with uniaxial Bouc-Wen models due to its coupled constitutive law of material. The method is applied to a structure with a rigid diaphragm, supported by four different columns. The structure is subjected to bidirectional and modulated filtered white noise excitations. The cumulative probability distribution function (CDF), probability density function (PDF), average rate of crossing, and first passage probability of displacement response are calculated for a column in th...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call