Abstract
Understanding a behavior of galaxy biasing is crucial for future galaxy redshift surveys. One aim is to measure the baryon acoustic oscillations (BAOs) within the precision of a few percent level. Using 30 large cosmological N-body simulations for a standard LCDM cosmology, we study the halo biasing over a wide redshift range. We compare the simulation results with theoretical predictions proposed by Matsubara (2008) which naturally incorporate the halo bias and redshift-space distortions into their formalism of perturbation theory with a resummation technique via the Lagrangian picture. The power spectrum and correlation function of halos obtained from Lagrangian resummation theory (LRT) well agree with N-body simulation results on scales of BAOs. Especially nonlinear effects on the baryon acoustic peak of the halo correlation function are accurately explained both in real and redshift space. We find that nonlinearity and scale dependence of bias are fairly well reproduced by 1-loop LRT up to k=0.35hMpc^{-1} (z=2 and 3) within a few percent level in real space and up to k=0.1hMpc^{-1} (z=2) and 0.15hMpc^{-1} (z=3) in redshift space. Thus, the LRT is very powerful for accurately extracting cosmological information in upcoming high redshift BAO surveys.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.