Abstract

A nonlinear bending analysis is presented for a rectangular Reissner–Mindlin plate with free edges subjected to combined transverse partially distributed load and compressive edge loading and resting on a two-parameter (Pasternak-type) elastic foundation. The formulations are based on the Reissner–Mindlin plate theory considering the first-order shear deformation effect, and including the plate-foundation interaction. The analysis uses a mixed Galerkin-perturbation technique to determine the load–deflection curves and load–bending moment curves. Numerical examples are presented that relate to the performances of moderately thick rectangular plates with free edges subjected to combined loading and resting on Pasternak-type elastic foundations from which results for Winkler elastic foundations are obtained as a limiting case. The influence played by a number of effects, among them foundation stiffness, transverse shear deformation, loaded area, the plate aspect ratio and initial compressive load are studied. Typical results are presented in dimensionless graphical form.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.