Abstract

This paper deals with the nonlinear bending response of functionally graded porous beams reinforced by graphene platelets (GPLs) with various boundary conditions using the Ritz method. Based on the trigonometric shear deformation beam theory and the von Kárman type of geometrical nonlinearity strains, the system of nonlinear governing equations is derived using the minimum total potential energy principle. This system of nonlinear equations is then solved by the Newton–Raphson method. The comparison with the available published results validates the obtained results. The effects of the porosity distribution patterns, the porosity coefficient, the GPL reinforcements, the slenderness ratios and the boundary conditions on the nonlinear deflection of the FGP porous beam are also investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.