Abstract
With very limited literature being available on the nonlinear bending behaviors of functionally graded carbon nanotube (FG-CNT) reinforced composite thick plates, this paper fills the apparent void by providing solutions to this problem based on the first-order shear deformation theory (FSDT). The plate considered rests on elastic foundations under transversely distributed loads. The analysis is carried out using the element-free IMLS-Ritz method. The arc-length iterative algorithm and the modified Newton–Raphson method are employed to obtain the nonlinear responses of FG-CNT reinforced composite plates. Convergence and comparison studies on a few example problems are performed to validate the numerical stability and accuracy of the IMLS-Ritz method. In this study, the characteristics of nonlinear bending influenced by foundation stiffness, transverse shear deformation, CNT distribution, CNT volume fraction and boundary conditions are examined.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.