Abstract
When ramp-and-hold currents are injected into a motoneuron of an anesthetized cat, the motoneuron responds with a high initial firing rate (dynamic phase), which then adapts to a lower steady-state firing rate. The firing rates during the dynamic and the steady-state phases are linearly related to the rate of change and the magnitude of the injected current, respectively. In human subjects, where inputs to the motoneurons are not accessible, force parameters are used to describe motoneuron behaviour. Population responses of human motoneurons, measured in terms of gross electromyographic (EMG) activity, increase linearly with the magnitude and the rate of change of force. No study has attempted to examine the question of linearity of single motor units during the dynamic as well as the steady-state phases. The following study recorded single motor unit and EMG activities simultaneously from the flexor carpi radialis muscle in human subjects completing ramp-and-hold force trajectories. Although the results confirmed the linear relationship between EMG activities and the rate and magnitude of the force, a nonlinear activity pattern was observed between the single motor unit firing and the force parameters, suggesting that recruitment must be responsible for the linear behaviour of EMG activity. Comparisons of different background activity levels on the firing patterns of a given motor unit, as well as comparisons of two simultaneously recorded units, further supported nonlinear response patterns of single motor units.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.