Abstract

The nonlinear behavior of a suspended sphere in a single-axis acoustic levitator was studied. Spontaneous oscillations of the sphere in this levitator were experimentally analyzed recording its positions using a high speed camera. A mathematical model based on acoustic radiation forces and real parameters is proposed to describe the dynamics of the sphere movement and its stability. The stability of the motion was investigated via a Lyapunov exponent diagram. We observed that the axial and radial movements of small spheres under levitation may present regular stability and chaotic ones. The Lyapunov exponent diagram for the model shows a complexity structure sharing different regions of stability according to the model parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.