Abstract

A common misperception within the neural network community is that even with nonlinearities in their hidden layer, autoassociators trained with backpropagation are equivalent to linear methods such as principal component analysis (PCA). Our purpose is to demonstrate that nonlinear autoassociators actually behave differently from linear methods and that they can outperform these methods when used for latent extraction, projection, and classification. While linear autoassociators emulate PCA, and thus exhibit a flat or unimodal reconstruction error surface, autoassociators with nonlinearities in their hidden layer learn domains by building error reconstruction surfaces that, depending on the task, contain multiple local valleys. This interpolation bias allows nonlinear autoassociators to represent appropriate classifications of nonlinear multimodal domains, in contrast to linear autoassociators, which are inappropriate for such tasks. In fact, autoassociators with hidden unit nonlinearities can be shown to perform nonlinear classification and nonlinear recognition.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.