Abstract

Nonlinear audio system identification generally relies on Gaussianity, whiteness and stationarity hypothesis on the input signal, although audio signals are non-Gaussian, highly correlated and non-stationary. However, since the physical behavior of nonlinear audio systems is input-dependent, they should be identified using natural audio signals (speech or music) as input, instead of artificial signals (sweeps or noise) as usually done. We propose an identification scheme that conditions audio signals to fit the desired properties for an efficient identification. The identification system consists in (1) a Gaussianization step that makes the signal near-Gaussian under a perceptual constraint; (2) a predictor filterbank that whitens the signal; (3) an orthonormalization step that enhances the statistical properties of the input vector of the last step, under a Gaussianity hypothesis; (4) an adaptive nonlinear model. The proposed scheme enhances the convergence rate of the identification and reduces the steady state identification error, compared to other schemes, for example the classical adaptive nonlinear identification.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.