Abstract

Dynamic equations describing the attitude motion of flexible spacecraft with scissored pairs of control moment gyroscopes are established. A nonlinear controller is designed to drive the flexible spacecraft to implement three-axis large-angle attitude maneuvers with the vibration suppression. Singularity analysis for three orthogonally mounted scissored pairs of control moment gyros shows that there exists no internal singularity in this configuration. A new pseudo-inverse steering law is designed based on the synchronization of gimbal angles of the twin gyros in each pair. To improve the synchronization performance, an adaptive nonlinear feedback controller is designed for each pairs of control moment gyros by using the stability theory of Lyapunov. Simulation results are provided to show the validity of the controllers and the steering law.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.