Abstract

When the Lagrangian relaxation technique is used to solve hydrothermal scheduling problems, many subproblems have linear stage-wise cost functions. A well recognized difficulty is that the solutions to these subproblems may oscillate between maximum and minimum generations with slight changes of the multipliers. Furthermore, the subproblem solutions may become singular, i.e., they are undetermined when the linear coefficients become zero. This may result in large differences between subproblem solutions and the optimal primal schedule. In this paper, a nonlinear approximation method is presented which utilizes nonlinear functions, quadratic in this case, to approximate relevant linear cost functions. The analysis shows that the difficulty associated with solution oscillation is reduced, and singularity is avoided. Extensive testing based on Northeast Utilities data indicates that the method consistently generates better schedules than the standard Lagrangian relaxation method. >

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.