Abstract

In this paper, an algorithm is derived to solve a problem of inverse acoustics. It considers the damped acoustic boundary value problem, i.e. the Helmholtz equation and admittance boundary condition, in order to approximate the boundary admittance of interior domains. The algorithm is implemented by using a finite element method and tested for two-dimensional cavities with arbitrary shapes. The admittance condition is reconstructed based on sound pressure measurements. The solution of the arising nonlinear system of equations is obtained by applying the Newton method following a presetting method for finding reasonable initial boundary admittance values. A residual norm accounts for the objective function. Its first- and second-order sensitivities are determined analytically by using a modal decomposition in order to avoid direct inversion of the system matrix. The experiment is simulated by taking sound pressure data of the forward solution as inputs for the inverse problem. Test examples show that very few measurement points are necessary to reproduce piecewise constant boundary admittance values very accurately. Then, the admittance boundary condition is applied to reproduce the sound pressure distribution in the cavity. Again, it becomes obvious that only a few measurement points are required to reconstruct the sound pressure field.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call