Abstract

Many structural materials, which are preferred for the developing of advanced constructions, are inhomogeneous ones. These materials have complex internal structure and properties, which make them to be more effectual in the solution of special problems required for development engineering. On the other hand, in consequence of this internal heterogeneity, they exhibit complex mechanical properties. In this work, the analysis of some features of the behavior of composite materials under different loading conditions is carried out. The dependence of nonlinear elastic response of composite materials on loading conditions is studied. Several approaches to model elastic nonlinearity such as different stiffness for particular type of loadings and nonlinear shear stress–strain relations are considered. Instead of a set of constant anisotropy coefficients, the anisotropy functions are introduced. Eventually, the combined constitutive relations are proposed to describe simultaneously two types of physical nonlinearities, one of which characterizes the nonlinearity of shear stress–strain dependency and another one determines the stress state susceptibility of material properties. The method for experimental determination of material’s functions is proposed. Quite satisfactory correlation between the theoretical dependencies and the results of experimental studies is demonstrated.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call