Abstract

The results of a detailed study of the nonlinear and postbuckling responses of curved unstiffened composite panels with central circular cutouts are presented. The panels are subjected to uniform temperature change and an applied in-plane edge shear loading. The analysis is based on a first-order shear-deformation Sanders-Budiansky type theory with the effects of large displacements, moderate rotations, transverse shear deformation and laminated anisotropic material behavior included. A mixed formulation is used with the fundamental unknowns consisting of the generalized displacements and the stress resultants of the panel. The nonlinear displacements, strain energy, transverse shear stresses, transverse shear strain energy density, and their hierarchical sensitivity coefficients are evaluated. Numerical results are presented for cylindrical panels with central circular cutouts and are subjected to uniform temperature change and an applied in-plane edge shear loading. The results show the effects of variations in the panel curvature, hole diameter, laminate stacking sequence and fiber orientation, on the nonlinear and postbuckling panel responses, and their sensitivity to changes in the various panel, layer and micromechanical parameters.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.