Abstract

We study a sampling setup where a continuous-time signal is mapped by a memoryless, invertible and nonlinear transformation, and then sampled in a nonideal manner. Such scenarios appear, for example, in acquisition systems where a sensor introduces static nonlinearity, before the signal is sampled by a practical analog-to-digital converter. We develop the theory and a concrete algorithm to perfectly recover a signal within a subspace, from its nonlinear and nonideal samples. Three alternative formulations of the algorithm are described that provide different insights into the structure of the solution: A series of oblique projections, approximated projections onto convex sets, and quasi-Newton iterations. Using classical analysis techniques of descent-based methods, and recent results on frame perturbation theory, we prove convergence of our algorithm to the true input signal. We demonstrate our method by simulations, and explain the applicability of our theory to Wiener-Hammerstein analog-to-digital hybrid systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.