Abstract
Batch or semibatch process monitoring is a challenging task because of various factors such as strong nonlinearity, inherent time-varying dynamics, batch-to-batch variations, and multiple operating phases. In this article, a novel nonlinear and non-Gaussian dissimilarity method based on multiway kernel independent component analysis (MKICA) and multidimensional mutual information (MMI) is developed and applied to batch process monitoring and abnormal event detection. MKICA models are first built on the normal benchmark and monitored batches to characterize the nonlinear and non-Gaussian variable relationship of batch processes. Then, the kernel independent component (IC) subspaces are extracted from the benchmark and monitored batches. Further, a multidimensional mutual information based dissimilarity index is defined to quantitatively evaluate the statistical dependence between the benchmark and monitored subspaces through the moving-window strategy. With the corresponding control limit estimated from th...
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.