Abstract

Classical evolutionary game theory has typically considered populations within which randomly selected pairs of individuals play games against each other, and the resulting payoff functions are linear. These simple functions have led to a number of pleasing results for the dynamic theory, the static theory of evolutionarily stable strategies, and the relationship between them. We discuss such games, together with a basic introduction to evolutionary game theory, in Sect. 5.1. Realistic populations, however, will generally not have these nice properties, and the payoffs will be nonlinear. In Sect. 5.2 we discuss various ways in which nonlinearity can appear in evolutionary games, including pairwise games with strategy-dependent interaction rates, and playing the field games, where payoffs depend upon the entire population composition, and not on individual games. In Sect. 5.3 we consider multiplayer games, where payoffs are the result of interactions between groups of size greater than two, which again leads to nonlinearity, and a breakdown of some of the classical results of Sect. 5.1. Finally in Sect. 5.4 we summarise and discuss the previous sections.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.