Abstract

We consider a quasistatic nonlinear model in thermoviscoelasticity at a finite-strain setting in the Kelvin–Voigt rheology, where both the elastic and viscous stress tensors comply with the principle of frame indifference under rotations. The force balance is formulated in the reference configuration by resorting to the concept of nonsimple materials, whereas the heat transfer equation is governed by the Fourier law in the deformed configurations. Weak solutions are obtained by means of a staggered in-time discretization where the deformation and the temperature are updated alternatingly. Our result refines a recent work by Mielke and Roubíček (Arch Ration Mech Anal 238:1–45, 2020) since our approximation does not require any regularization of the viscosity term. Afterwards, we focus on the case of deformations near the identity and small temperatures, and we show by a rigorous linearization procedure that weak solutions of the nonlinear system converge in a suitable sense to solutions of a system in linearized thermoviscoelasticity. The same property holds for time-discrete approximations and we provide a corresponding commutativity result.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.