Abstract
In the advent of the miniaturized mobile devices, the packaging technology is required utmost high performance of the thin composite laminates in such materials properties as the coefficient of thermal expansion (CTE) and stiffness. Accordingly, the composition of a thermosetting resin becomes extremely complicated often including multiple fillers, monomers and/or catalysts in thermoset-based glass fiber prepregs. The prepreg systems is so complicated that it is usually difficult to obtain a reliable kinetic description and methodology that could be used for the complex thermal cycles including both isothermal and dynamic-heating segments in a facile manner. In this investigation, we propose an isoconversional kinetic using an ultra-thin glass fiber epoxy prepreg with highly loaded silica filler (the ultra-thin glass fiber/silica bead epoxy prepreg) as a model system. The activation energy was determined as a function of the conversion of curing reactions, which was fitted to linear models. The kinetic prediction using the linear models showed an excellent agreement to isothermal experiments. The master curve of a conversion-dependent function which derived from activation energy dependency used to investigate the complex reactions of the ultra-thin glass fiber/silica bead epoxy prepreg.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.