Abstract

New nonlinear analysis tools for harmonic-injection dividers are presented based on bifurcation concepts. The advantage of these tools is their application simplicity and efficiency, which has enabled their use for actual circuit design and optimization. The tools allow control over the divided frequency and output power and predict the variation of the synchronization bands versus the circuit element values, which facilitates design correction. They have been extended to the analysis and optimization of phase-locked harmonic-injection dividers, which contain a low-frequency feedback loop. The use of this loop, together with the accuracy of the analysis, has enabled the implementation of novel frequency-division functions, such as the division of variable order, versus a circuit parameter, or the division by fractional order. The output noise of the frequency dividers is analyzed through the conversion-matrix approach, studying the noise variation along the division bands. The new techniques have been applied to the design of a frequency divider by order 4 and 5, with 18-GHz input frequency, and excellent agreement with experimental results has been obtained.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.