Abstract

Progressive collapse is defined as the expansion of an initial local failure of an element into another element of the structure and ultimately leading to the collapse of the whole structure or a large part of it in a disproportionate way. Three dimensional modeling, using the finite element method was developed and investigated to understand the progressive collapse of high rise buildings with composite steel frames. The nonlinear dynamic analysis examined the behavior of the building under two column removal scenarios. Two different types of lateral resistance systems were selected to be analysis and compared. The buildings included regular and irregular plans. The response of the building was studied in detail, and measures are recommended to reduce progressive collapse in future designs. The results of this study shows that side case removal in moment frame and moment with centrically braced frame systems was more critical and destructive compared with corner case removal. Comparing the models, for the two different lateral resistance systems, the dynamic response of columns were different, but were not remarkable.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call