Abstract

The present paper analyzes the steady state rolling contact (SSRC) response of nonlinear viscoelastically layered rigid roll indented by a rigid cylindrical indenter. Both material and geometrical nonlinearities are accounted for in the framework of the updated Lagrangian finite element formulation. The Schapery's viscoelastic creep model is adopted to model the viscoelastic behavior. To accommodate the steady state rolling condition, the constitutive equations are recast into a spatially dependent incremental form. Throughout the contact interface, the Lagrange multiplier method is used to enforce the contact constraints, while the classical Coulomb's law is adopted to simulate friction. The resulting nonlinear equilibrium equations are solved by the Newton–Raphson method. The developed model is applied to analyze a viscoelastically layered rigid roll in steady state rolling and intended by a rigid cylindrical indenter. Results showed the distinct effects of angular velocity, retardation time, indenter radius, and viscoelastic layer thickness on the SSRC configuration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call