Abstract

Introduction- Reinforced Concrete Frames (RCF) constitute a significant portion of the building stock in areas with seismic hazard. Many older buildings of this type were designed and constructed with little or no consideration of lateral load effects. When not properly designed, the Beam-Column Joints (BCJ) can be the weak links in the RCF. Unreinforced BCJ are still quite prevalent in older-type construction especially in Asia and Latin America. The unreinforced BCJ are key components that have a significant impact on the structure’s behavior of RCF. Regarding the analytical approaches applicable to BCJ, the approaches range from simplified to more elaborate and phenomenological-oriented. Unfortunately, most of them lack of simplicity, numerical stability and practicality to robustly evaluate the performance of unreinforced BCJ. This paper presents an analytical approach to modeling unreinforced BCJ.
 Objective- The aim of this paper is to present a modified modeling approach to simulate the nonlinear behavior of unreinforced BCJ in RCF structures.
 Method- The approach presented is based on the model presented in [1]. The model was modified to follow the same nomenclature of the [2]. In the proposed approach, the BCJ subassembly is represented by (1) a set of rigid links placed in cross-shape are used to represent the joint geometry, (2) a zero-length element with an empirical quad-backbone curve, placed at the middle point of the rigid links, to represent the joint shear behavior, and (3) columns and beams elements modeled with fiber formulation and five integration points to capture the material nonlinearity of the elements that frame into the joint. The approach was implemented in the OpenSEES platform, and this was validated with 13 test results of unreinforced BCJ documented in the literature.
 Results- The proposed modelling approach can satisfactorily predict the joint shear capacity. A 2% difference and a standard deviation of about 11% were obtained when compared to 13 test results of unreinforced BCJ documented in the literature. In terms of cyclic behavior, the proposed modelling approach shown to adequately capture the initial stiffness, strength degradation, reloading stiffness, pre-capping, and post-capping capacity.
 Conclusions- The method proposed presents satisfactory agreement with the test results analyzed. Taking into account the minor modifications applied to the proposed method and the uncertainties associated with the materials, test measurements, test setup, and the tolerances, the proposed method can satisfactorily predict the unreinforced BCJ shear capacity in RCF structures. It is assumed that the procedures presented here will contribute in the incorporation of the unreinforced BCJ flexibility when modeling older-type RCF construction in a pragmatic manner.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call