Abstract

Concrete slabs supported on four edges and loaded axially and transversely are used in many civil engineering applications. High-strength concrete slabs are commonly used for marine structures and offshore platforms. The catastrophic nature of the failure exhibited by reinforced concrete slabs when subjected to concentrated loads has been a major concern for engineers over many years. Therefore, there is a great need to develop accurate numerical models suitable for normal-strength or high-strength concrete in order to reflect properly its structural behaviour.Proper simulation of the post-cracking behaviour of concrete has a significant effect on the nonlinear finite element response of such slabs. Cracking and post-cracking behaviour of concrete which includes aggregate interlock, dowel action, and tension-stiffening effects is especially crucial for any nonlinear concrete analysis. The post-cracking behaviour and the fracture energy properties of high-strength concrete are different from those of normal-strength concrete. This can be realized by comparing the experimental testing results of plain normal- and high-strength concrete. The experimental results of testing plain high-strength concrete in direct tension indicated that the total area under the stress - crack width curve in tension is different from that of normal-strength concrete.A suitable softening and tension-stiffening model is recommended for high-strength concrete; other existing models suitable for normal-strength concrete are discussed. The proposed post-cracking behaviour models are implemented in a nonlinear finite element program in order to check the validity of such models by comparing the actual experimental data with the finite element results. Finally, a parametric study was conducted to provide more insight into the behaviour of high-strength concrete slabs subjected to combined uniaxial in-plane loads and lateral loads. The effects of the magnitude of in-plane load and the sequence of loading on the structural behaviour of such slabs are examined. Key words: high-strength concrete, slabs, punching shear, fracture energy, tension-softening, tension-stiffening, parametric study.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.