Abstract

This study presents a nonlinear analysis with application to a doubly curved shallow shell element free of ‘locking’. The ‘locking’ phenomenon is eliminated by explicitly determining the shear and membrane correction factors. The element formulation utilizes the Reissner-Mindlin and Marguerre theories. The analysis of thin and moderately thick composite shells undergoing large displacements and rotations is achieved by using the corotational form of an updated Lagrangian formulation. The validity of the analysis is established by correlating present results with various benchmark cases that involve large displacements and rotations, as well as elastic stability.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.