Abstract

Floating ring annular seals represent one of the solutions for controlling leakage in high speed rotating machinery. Low leakage is ensured by the small radial clearance. Under normal operating conditions, the ring must be able to “float” on the rotor in order to accommodate its vibration. Impacts between the carbon ring and the rotor are prohibited. The present paper introduces a non-linear numerical model of gradually increasing complexity. A first version of the model has two translation degrees of freedom and describes planar trajectories of the floating ring. It uses transient hydrodynamic and Coulomb forces. The next step is including impacts between the rotor and the carbon ring and between anti-rotation pins and the ring casing. A rotation degree of freedom must be also added. The results show that for a given rotation speed and with increasing amplitude of the rotor whirl, the trajectory of the floating ring seal changes from uniform whirl to quasi-periodic before triggering contacts in the main seal. The impacts of the anti-rotation pins with the ring casing completely modify the dynamic response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.