Abstract
Compliant robotic fish can achieve a better swimming performance than rigid-bodied robotic fish. Therefore, this article investigates the swimming behavior of the compliant robotic fish based on a new swimming model that combines the large-amplitude elongated-body theory with decoupled natural orthogonal complement matrices. The simulation reveals that the multi-order resonances are generated in tail-beat amplitude, forward speed, stride length, and transport efficiency when the compliant robotic fish is driven at the corresponding frequency. Moreover, the resonant effects demonstrate the nonlinear behaviors as the driving torque increases. A control strategy for resonance utilization is presented to improve the performance capabilities. The potential influence factors for resonant effects are also discussed, showing that the tail-generated hydrodynamic force significantly impacts the resonant effect. These nonlinear characteristics can provide important guidelines for the motion control of the compliant robotic fish.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.