Abstract

The present study reports chaotic flow oscillations observed in a natural circulation boiling loop. The periodic oscillations of wall temperature (thermal oscillations) initiate at a certain condition of heat flux and inlet subcooling in addition to geysering instability and pressure-drop oscillations. We observed that boiling regime changes from nucleate boiling to transition boiling as a result of decrease in inlet subcooling and increase in heat flux. The thermal oscillations are strongly coupled with pressure-drop oscillations. Nonlinear analysis of the time series of loop flow rate at various heater power and inlet subcooling have been carried out using statistical analysis, fast Fourier transform (FFT), time delay embedding for attractor reconstruction, autocorrelation, and correlation dimension. The analysis confirms that the oscillations are more chaotic at relatively low heater power and high inlet subcooling. The complexity of the oscillations strongly depends on boiling heat transfer regime. Our observations and analysis have been supported by other relevant experiments.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.