Abstract

The paper deals with the investigation of nonlinear static and dynamic behaviors of electrostatically actuated carbon nanotubes with different geometries and boundary conditions. The deflection and pull-in properties are studied in detail in the presence of DC and combined DC + AC electrostatic voltages accompanying the interatomic interactions. The considered nano system can be applied in a wide range of nanoelectronics devices such as nano switches, nano resonators, nano transistors, nano capacitors and random access memories. Moreover, a useful mathematical model of the nano sensor application of the studied nano system to sense the stiffness of the nano particles is presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.